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We derive several schemes that extend a monotone function on the boundary of
the unit square to be a monotone function on the unit square while maintaining the
smoothness of the function. Our results are related to those of Dahmen, DeVore.
and Micchelli and have application to the modeling of charge distribution in semi-
conductor design. (e 1994 Academic Press, Inc.

1. INTRODUCTION

Let [Rd be the d-dimensional Euclidean space, and let [R: denote the set
of all points in [Rd having nonnegative components. A function f is said to
be monotone (nondecreasing) on a subset Q of [Rd if for any pair of
x, y E Q with x - y E IR:, we have f(x) ~ f(y). The monotonicity is said to
be strict if f(x) > f(y) whenever x - y E [R: and x"# y. Motivated by the
modeling of charge distribution for semiconductor design, Dahmen,
DeVore and Micchelli [1] studied the following problem:

Given a monotone function f on oQ, find a monotone function F on Q
such that

F(x) = f(x) for all x E QQ.

Such a function F is called a monotone extension off Dahmen, DeVore,
and Micchelli [1] proved the following theorem:

THEOREM 1.1. Let Q be a bounded subset of [Rd having nonempty interior.
There is no linear and bounded operator Lfrom C(oQ) to C(Q) such that Lf
is monotone on Q whenever f is monotone on oQ.

In [1], several nonlinear methods of constructing monotone extensions
were given. The case Q = [0, 1] 2 C [R2 received particular attention. In this
case, one starts with a function fEC([O, 1]2) which is monotone on
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a[o, 1]2, and wishes to find an FEC([O, 1]2) which is monotone on
[0, 1]2 and satisfies

F(x, 0) = f(x, 0),

F(O, y) = f(O, y),

F(x, 1) = f(x, 1),

F(l, y) = f(l, y),

O~x~ 1,

It is practically important that F keep the smoothness of the boundary
functions. This means the following: if f( x, 0), f( x, 1), f( 0, Y), and f(l, y)
have certain degrees of smoothness as univariate functions, then one would
like F to have the same degree of smoothness as a bivariate function.
Furthermore, if the four boundary functionsf(x, O),f(x, 1).1(0, y),f(l, y)
are analytic on their domains, then one would like F to be an analytic
bivariate function on [0, 1Y We shall refer to such a function F as an
analytic monotone extension (AME) of the given boundary data f(x, 0),
f(x, 1).1(0, y),f(l, y).

To construct analytic monotone extensions, Dahmen, DeVore, and
Micchelli considered the Boolean sum of the four boundary functions
f(x, 0), f(x, 1), f(O, Y), f(l, y), and by composing the Boolean sum with
some carefully chosen univariate analytic functions, they successfully con­
structed AMEs for a class of boundary data that satisfy certain conditions.

The work of Dahmen, DeVore, and Micchelli naturally leads us to con­
sider the following general construction scheme: For given boundary data
f(x, O),f(x, 1).1(0, y),f(l, y), find a function G of eight variables analytic
with respect to the first four variables, such that the function

F(x, y) := G(f(x, 0), f(x, 1), f(O, y), f( 1, Y),

f(O, 0 ),f( 1,0).1(0, 1),f( 1, 1))

is a monotone extension of the boundary data. Ideally, we hope to find a
sequence {Gn };,":: I of such functions which achieve the following goal: For
any given monotone boundary dataf(x, O),f(x, 1).1(0, y),f(l, y), one can
choose an element Gn of the sequence so that the function Fn(x, y) :=
Gn(f(x,O), f(x, 1), f(O, Y), f(l, y), f(O, 0), f(1, 0), f(O, 1), f(l, 1)) is a
monotone extension of the boundary data.

This paper is organized as follows. In Section 2, we give several simple
expressions of AMEs for some special classes of boundary functions. Our
principal goal is to simplify the procedure established in [1] and to write
AMEs in closed forms convenient for application. Our efforts to search for
simpler expressions for AMEs are motivated by the practical importance of
the problem and are inspired by the work of Dahmen, DeVore, and
Micchelli. In Section 3, we show that all the current existing methods of
constructing AMEs (including the one of Dahmen, DeVore, and Micchelli
associated with Boolean sum) fail if extra conditions on the boundary data
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are not assumed. This implies that with the approach involved, the result
of Theorem 4.1 in [1] cannot be improved. We also give some negative
results on the solvability of analytic monotone extensions by a sequence of
analytic functions. In Section 4, we discuss analytic monotone extension of
higher orders.

2. CONSTRUCTION OF ANALYTIC MONOTONE EXTENSIONS IN SPECIAL CASES

Let .it( [0, 1f) denote the set of all functions in C( [0, 1f) which are
monotone on 8[0, 1Y Let JV be a subset of .it([0, 1]2), and
d := {Gn} nEA be a set of at most countably many functions of eight
variables, analytic with respect to the first four variables. We say that the
problem of constructing AMEs for functions of "Y by d is solvable if the
following scheme can be accomplished: for any f E JV, one can find a
Gn E d so that the function

F(x, y) := Gn(f(x, 0), f(x, 1), f(O, y), f(l, y),

f(O, 0), f(1, 0), f(O, 1), f(l, 1))

is a monotone extension of the boundary data. In this case, we shall also
say that d provides AMEs for functions of fi.

In this section, we investigate the solvability of this monotone extension
scheme for some subsets of .it([0, lr).

For convenience of discussion, we assume without loss of generality that
our function fE C([O, 1]2) satisfiesf(O,O)=O,f(l, 1)=1. We also define
a := f( 1, 0) and b := f(O, 1). Our first result concerns the case a = b, and we
shall use the symbol J{a ~ b to denote the set of all functions f in J{( [0, 1] 2)
satisfyingf(l, O)=f(O, 1).

PROPOSITION 2.1. There exist three quadratic polynomials of four
variables Pi' i = 1, 2, 3, such that for any f E.ita ~ b' the function

F(x, y) := Pj(f(x, 0), f(x, 1), f(O, y), f(l, y))

is a monotone extension of the boundary data for some i, 1~ i ~ 3.

Proof Consider the following three polynomials:

PI (s, t, u, v) := tv,

P 2 (s, t, u, v) :=s+u-su,

su (t-a)(v-a)
Pds, t, u, v) :=s+u--+ .

a I-a
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In the first case, assume a =b =O. By the monotonicity of boundary data,
we have f(x, 0) =0 and f(O, y) =O. It is easy to see that the function

F(x, y) := P df(x, O),f(x, 1),f(0, y),f(l, y)) = f(x, 1) f(l, y)

is a monotone extension of the boundary data. In the second case, assume
a = b = 1. Then we have f(x, 1) =1 and f(l, y) =1, and we see that the
function

F(x, y) := P2(f(x, O),f(x, 1),f(0, y),f(I, y»

= f(x, 0) + f(O, y) - f(x, 0) f(O, y)

is a monotone extension of f
Finally, assume 0 < a = b < 1. Consider the function

F(x, y):= P 3 (f(x, O),f(x, 1),f(0, y),f(l, y»

= f(x, 0) + f(O, y) _f(x, O)f(O, y) + [f(x, 1) - ~][f(I, y) - 0]
o -0

One easily verifies that F interpolates the boundary data. To see the
monotonicity of F, let Xl> x 2 • We have

[
f(O, Y)J

F(x 1 • y)-F(X2' y):= [f(x,. 0)- f(X2, 0)] l--
a
-

+ [f(x l , 1) - f(X2, 1)] [f(l; ~)a- aJ.

Thus F(x l , y)-F(X2' y)~O follows from the assumption that the bound­
ary data are monotone. Similarly, one shows that F(x, y t> - F(x, Yz) ~ 0
under the condition y 1 ~ Yz. I

In what follows, we shall see that the violation of the seemingly indif­
ferent condition a = b brings essential difficulties in the construction of
AME.

In handling the case 0 #- b. we may assume, without loss of generality,
that 0 < b, since otherwise we can switch the roles of the variables X and
y. We may further assume that 0 < a < b < 1. In fact, if 0 = a < b < 1, then
f(x. 0) =0, and the function

1
F(x, y) := 1- b {j(I, y) [f(x, 1) - b] + f(O, y) [1- f(x, 1)]} (2.1)

is an analytic monotone extension of fIfo = 0, b = 1, then f(x, 0) = 0,
f(x, 1) =1, and the function

F(x, y) := xf(l, y) + (1 - x) f(O, y) (2.2)
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is an analytic monotone extension of fIfO < a < b = 1, then f(x, 1) '= 1,
and the function

1
F(x, y) :=- {j(0, y) [a- f(x, O)J + f(l, y)f(x, O))} (2.3)

a

is an analytic monotone extension of f
Let Ala,b denote the subset of all functions fin AI([O, 1J2) satisfying

f(O, 0)=0, f(l, O)=a, f(O, l)=b, f(l, 1)= 1 with O<a<b< 1. Let Qa,b
denote the set defined by Qa,b:= {(s, t, u, v):°~s ~a, b ~ t ~ 1, °~ u ~ b,
a~v~ 1, u~v}. In view of Eq. (2.1)-(2.3) and Proposition 2.1, we have
the following result:

PROPOSITION 2.2. Let d := {Gn} be a set of at most countably many
analytic functions of four variables on Qa.b which provides AMEs for func­
tions of Ala.b. Then there exists a set d 1 := {G~} of at most countably many
functions of eight variables analytiC with respect to the first four variables
which provides AMEs for functions of AI([0, 1J2).

In what follows, we will concentrate on dealing with functions in vlIa•b .

LEMMA 2.3. For any fE jla,b, define an operator L: Ala,b --- Ala.b by

L(f, )
.=f(x, 0) f(l, y) +f(x, 1) f(O, y) _f(x, 0) f(O, y)

,x, y . a b ab' (2.4 )

Then Lf interpolates the boundary data f(x, 0), f(x, 1), f(O, y), f( 1, y), and
Lf is monotone on [0, 1J2 if the following inequalities hold true for all °~ x,
y~1

af(x, 1) ~ f(x, 0), bf(l, y)~f(O, y). (2.5 )

We omit the proof of Lemma 2,3 which only involves some straight
forward calculations.

LEMMA 2.4. Let fE vlIa,b' Suppose that the boundary functions f(x, 0),
f(x, 1),f(0, y),f(l, y) are differentiable and satisfy

aF.(x, l)~F.(x,O),

bf~(l, y) ~f~,(O, y),

X E [0, 1J,

Y E [0, 1].
(2.6 )

Then the function L(f, x, y) is an AME off

Proof By the second part of Lemma 2.3, it suffices to show that
af(x,l)~f(x,O) and bf(l,y)~f(O,y). Consider the function I(x)=
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af(x, 1) - f(x, 0). Then I( 1) = 0, and for 0 ~ x ~ 1, we have I'(x) =

aI~(x, l)-F,(x,O)~O, since af~(x, 1)~f~(x,O). It follows that I(x)~O

for all x, O~x~ 1. Similarly, we show that bf(1, y)~f(O, y). I

Clearly, the conditions in Lemmas 2.3 and 2.4 will generally not be
fulfilled. Influenced by the approach of Dahmen, DeVore, and Micchelli in
the proof of Theorem 4.1, we wish to find a strictly increasing analytic func­
tion epf: [0, 1] -+ [0, 1] of simple structure so that the function epfo f
satisfy the conditions of Lemma 2.4, i.e., we wish the following relations to
hold for the function epfo f:

epf(O) =0, epf(I)= 1,

[epf(J(x, 1))]',~ [epf(J(x,O))]~,

[epf(J(1, y)) ]". ~ [epf(J(O, y)) ]".,

To this end, we consider the function

XE [0,1],

y E [0, 1].

n = 1, 2, ....

(2.7)

It is easy to see that for each n, the function ep" is strictly increasing and
analytic on [0,1] with ep,,(O)=O, ep,,(l)= 1. Furthermore we have the
following result:

LEMMA 2.5. Let fE Jla,b be strictly monotone on 0[0, 1]2. Assume that
the four functions F,(x, 0), f~(x, 1), f".(O, y), f".(I, y), are continuous and
do not vanish on their domains. Then there exists a positive integer N, such
that the following inequalities hold true for every ep n ~'ith n ~ N:

[ep,,(J(x, 1))]:,~ [ep,,(J(x, 0))]'"

[ep" (J(l, y) )]", ~ [ep" (J(O, y))]".,

X E [0,1],

y E [0, 1].
(2.8 )

Proof We shall make use of the following three quantities derived from
the boundary data f( x, 0), f( x, 1), f(0, Y), f( 1, y):

c5 := min {f(x, 1) - f(x, 0)'/(1, y) - f(O, y)},
x.y

m :=min {f~(x,O),/~(x,1),/',.(0, y),/"(I, y)}, (2.9)
x.y

M:= max {F,(x, 0), FJx-, 1),/',.(0, y),/"(1, y)}.
x, .Ii
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It follows from the assumption on the boundary data that <5 > 0 and m > O.
We have

[lPn(f(x, 1))]~ (f(x, 1)+1/2)-(n+llf~(x,1)

[lPn(f(x,O)]', (f(x, 0) + 1/2)-(n+ 1) f~(x, 0)

~ [(f(X, 0) + <5 + 1/2)]-ln+ 1) M

~ (f(X, 0) + 1/2) m

M
~ (1 + 2<5) - In + 1) _.

m
(2.10 )

Hence there exists a natural number N such that the right-hand side of the
above inequality is less than 1 for all n > N. Thus, we have proved the first
inequality in (2.8). The second one follows similarly. I

We shall refer to the conditions of Lemma 2.5 as "Conditions (* )," and
denote the set of all functions satisfying Conditions (*) by AI *.

THEOREM 2.6. Let fE .;1(* be fixed. Then there exists a natural number N
so that the function Fn(x, y) ;= lP;; 1 0 L( lP nO f, x, y) is an analytic monotone
extension of f on [0, 1] 2 for each n > N, where lP;; 1 denotes the inverse

of lPn ·

Proof For each n = 1, 2, ... , we have lPn(f(O, 0)) = 0, lPn(f(I, 1)) = 1. If
the boundary functions f(x, 0 ),f(x, 1),f(0, y ),f(1, y) satisfy the conditions
of Lemma 2.5, then there exists a natural number N such that for each
n> N, the functions lPn(f(x, 0»), lPn(f(x, 1)), lP n(f(0, y)), lPn(f(l, y»)
satisfy the inequalities in (2.8). By Lemma 2.4, the function

L(lP of, ,) = lPn(f(x, 0)) lPn(f( 1, y)) + lPn(f(x, 1)) lPn(f(O, y))
n ,X,} lPn(a) lPn(b)

lPn(f(x, 0)) lPn(f(O, y)

lPn(a) lPn(b)

is an analytic monotone extension of the functions lPn(f(x, 0)1,
lPn(f(x, 1)), lPn(f(O, y»), lPn(f(l, y). On the other hand, lP;;l is also a
strictly increasing analytic function on [0, 1], and therefore for each n > N,
the function lP;; 1 0 L( lP 0 f, x, y) is an analytic monotone extension of the
boundary data f(x, O),f(x, 1),f(0, y),f(1, y). I

For purpose of comparison and for convenience of application, we give
another construction.
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_ 1 1
L(f, x, y) = (1-a)(1 _b)f(x, 1)f(l, y)-I_af(x, O)f(l, y)

1 b
-1_b f (x, l)f(O, y)- (l_a)(l_b)f(l, y)

a 1
(1- a)(I- b/(x, 1) + 1-af(x, 0)

1 ab
+ I_b f (O, y)+ (l-a)(1-b) (2.11)

Then l interpolates the boundary data f(x,O), f(x, 1), f(O, y), f(1, y).
Furthermore, l is an AME off iff satisfies the following inequalities:

f(x, 1) - (1- b)f(x, 0) -b ~ 0,

f(l, y)- (1-a)f(O, y)-a~O,

x E [0, 1],

y E [0, 1].
(2,12)

Proof One directly verifies that l(f, x, y) interpolates. To see the
monotonicity of l(f, x, y) with respect to x, let Xl ~ X2. We have

L(f, Xl' y)-l(f, X2, y)

1 [f(l, y) a ]
=(I-b) (1-a)-/(O,y)-I-a [f(x l ,1)-f(X2,l)J

1
+ I-a [1- f(l, y)] [f(x l , 0)- f(x 2, 0)]. (2.13)

By the assumption f( 1, y) - (1- a) f(O, y) - a ~ 0, °~ y ~ 1, we have
l(f, XI> y) -l(f, X2, y) ~°for all O~ Xl ~ X 2~ 1 and O~ y~ 1. Similarly,
one verifies the monotonicity of L(f, X, y) with respect to y. I

LEMMA 2.8. l(f, X, y) is an AME off iff is monotone on 8[0, 1J2 and
if the following inequalities hold true:

(1 -b)f~(x, 0) ~f~(x, 1),

(l-a)/;,(O, y)~f~,(I, y),

X E [0, 1J,

YE[O,I].

(2.14 )

Proof Set J(y):=(f(I,y)((1-a»-f(O,y)-a((1-a). We see that
J(O) = °and by the condition (1- a)f~,(O, y) ~f~,(l, y), we have J'(y) ~°
for all °~ y ~ I, It follows that J(y) ~°for all y E [0, 1]. Therefore, from
Equation (2.13), we have l(f, Xl' y) -l(f, X2, y) ~O for all 0 ~ Xl ~X2 ~ 1
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and 0 ~ y ~ 1. Similarly, we verify that L(f, x, y 1 ) - L(f, x, Y2) ~ 0 for all
o~ y] ~ .h ~ 1 and 0 ~ x ~ 1. I

We notice that the conditions of Lemma 2.7 can only be satisfied by a
small class of boundary functions. Again we borrow the idea of Dahmen,
DeVore, and Micchelli in the proof of Theorem 4.1 [1]. For a given
function f E C( [0, 1] 2) we wish to find a function (PI so that the function
(PtCf satisfy the conditions of Lemma 2.7. For this purpose, we use the
functions (P"

(P .= ..:....(t_+_l)_"_-_1
fl' 2"-1 n = 1, 2, ....

The following theorem then follows in a way similar to Theorem 2.6.

THEOREM 2.9. Let f E ""* he fixed. There exists a natural number N so
that the function

F,,(x, y) :=(P~-l.L«(P"of,x, y)

is an analytic monotone extension off on [0, 1] 2 for each n > N, where (P ~-]

denotes the inverse of (P fl'

There is an intimate relationship between the operators L, l and the
Boolean sum operator L] of Dahmen, DeVore, and Micchelli defined by

Ld./; x, y) := ¢l(x) f(O, y) + (1 - ¢l(x)) f(1, y)

+1jJ(y)f(x,O)+(I-IjJ(y))f(x, l)

- (f(0, 0) q)(x) ljJ(y) + f(O, t) q)(x)(t -1jJ(y))

+ f(l, O)(I-t,6(x)) ljJ(y) + /(1, 1)(1-t,6(x)(I-IjJ(y))}.

(2.15)

Here the functions t,6(x), ljJ(y) are defined by

A. ._f(x, 1) - f(x, 0) - f(l, 1) + f(1, 0)
",(x).- J '

ljJ(y):=f(l,Y)-f(O,Y)~f(l, 1)+f(O, 1),
(2.16 )

where J := - 1(0,0) - 1(1,1) +1(0,1) + f(l, 0) is assumed not be zero.
Dahmen, DeVore, and Micchelli [1] showed that L] (f, x, y) is an AME

of f if f is monotone on a[O, 1]2 and if the following relations hold:

f(x, 1) - f(x, 0) E [f(l, t) - f( 1,0),/(0, 1) - f(O, 0)],

f( 1, y) - f( 0, y) E [f(l, 1) - f( 0, 1),/( 1, 0) - f( 0, 0)].

We have the following observation:

(2.17 )
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PROPOSITION 2.10. If the relations in (2.17) hold true, then either the
ones in (2.5) or the ones in (2.12) hold true.

Proof We recall that f(O, 0) = 0,f(1, 0) = a,f(O, 1) = band f( 1, 1) = 1.
Suppose the relations in (2.17) hold true and d > O. We have

af(x, l)-f(x,O)=[f(x, l)-f(x,O)]-f(x, l)(l-a)

~(1-a)-f(x,l)(l-a)~O,

bf(1, y)- f(O, y) = [f(1, y) - f(O, y)] - f(1, y)(l- b)

~ (1 - b) - f(1, y)( 1 - b )~ 0.

Suppose the relations in (2.17) hold true and Ll < 0. We have

f(x, 1) - (1 - b) f(x, 0) - b

= [f(x, 1) - f(x, O)J + bf(x, 0) - b ~ bf(x, 0) ~ 0,

f(1, y)-(1-a)f(O, y)-a

= [/(1, y) - f(O, y)] + af(O, y) - a ~ bf(x, 0) ~ 0. I

The above discussions yields the folllowing result:

THEOREM 2.11. There exists a sequence {Gn },';"= I of analytic functions of
four variables which provides analytic monotone extensions to functions
of vIt*.

Although Theorems 2.6 and 2.9 give some different and simple construc­
tions of analytic monotone extensions, the approaches involved are essen­
tially in the same vein as those of Dahmen, DeVore, and Micchelli [1] in
the proof of their Theorem 4.1. All of these construction methods require
the fulfillment of the extra conditions that the function f is strictly
monotone on 0[0, 1J2 and the four boundary functions f(x, 0), f(x, 1),
f(O, .v), f(l, y) are differentiable and their derivatives do not vanish on
their domains. In the next section, we shall show that with the approach
involved, these conditions are necessary.

3. FURTHER INVESTIGAnONS

THEOREM 3.1. Let G E C(Qa,h)' Assume that G satisfies the following
equations:

G(O, b, u, v) = u,

G(s, t, 0, a) = s,

G(a,l,u,v)=V,

G(s, t, b, 1) = t.
(3.1 )
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Define an operator ?T: vlta.b - vlta•b by ?T: f f-+ F, where

F(x, y) := G(f(x, 0), f(x, 1), f(O, y), f( 1, y).

Then ?Tf interpolates the boundary data f(x, 0), f(x, 1), f(O, y), f(l, y).
Furthermore, ?Tf is monotone on [0, 1]2 for every fE Jla. b if and only if G
is monotone on Qa.b'

Proof It is obvious that ?Tf interpolates f on the boundary if G satisfies
(3.1). It is also obvious that ?Tfis monotone on [0,1]2 for every fEvlta• b

if G is monotone on Qa.b' To show that the condition G is monotone on
Qa.h is also necessary, assume that G is not monotone on Qa.b' Then, there
exist two points WI = (Sl' t I' u l , vd, W 2= (S2, t2, U2, v2) in Qa.b' such that
WI - W2 E IR~ and G( WI) - G( W 2 ) < O. In this case, we can find two
points XI := (XI' yd, X 2 := (X2' Y2) in [0,1]2 and a function f in Jla•b

such that XI - X 2E IR~ and

f(xI,O)=sl'

f(x 2,0)=S2'

f(XI,I)=t l ,

f(X2, 1) = t 2,

f(O, yd=ul,

f(O, Y2) = U2,

f(1, Yd = VI'

f(1, Y2) = V2 ·

We thus have F(x l , yd-F(X2' Y2) = G(SI' t l , u l , vd - G(S2' t2, U2, v2) < O.
This means that ?Tf is not monotone on [0, 1]2 for this particular f and
leads to a contradiction. I

Theorem 3.1 enables us to change the problem of finding monotone
extensions of functions in vlta. b to a simpler problem of finding a single
continuous monotone function G on Qa.b satisfying (3.1). It is easily seen
that such functions exist. In working with AMEs, we need an analytic
monotone function G on Qa.b that satisfies (3.1). At this stage, we are not
certain about the existence of such an analytic function. However, with
little effort, we can show that it is impossible to find such a G from a
certain subset of analytic functions. Let fJl denote the set of all functions G
analytic on the poly-disc D:= {(s, t, u, v): lsi ~a, It I~ 1, lui ~b, Ivl ~ I}
having an expansion of the form

oc

G(S,t,u,V)= I L PI'.,,(s,t)ul'v",
n=O p.+v=n

where P1'." (s, t) are analytic functions on the disc {lsi ~ a, Itl ~ I}, and for
each n?-2, all but one PI'.v(s, t), j.l+v=n, are identically zero.

PROPOSITION 3.2. There is no function in fJl that satisfies (3.1) and at the
same time is monotone on Qa,b'
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Proof We will prove by contradiction. Assume that G E fJl satisfying
(3.1) and is monotone on Qa,b' For any fixed a, a < a < b, we have
G(O, b, a, a) = a and G(a, I, a, a) = a by (3.1). Since G is monotone on Qa,b'
G(s, t, a, a) = a for all sand t with (s, t, a, a) E Qa.b' Hence we have

(3.2)

Since for each n, n ~ 2, all but one P /'. v (s, t), fi + v = n are identically zero,
Eq. (3.2) shows that

Po,o(s, t) = 0,

P/"v(s, t)=O,

P1,0(s, t)+Po,ds, t)= I,

fi + v = n ~ 2.

Therefore, we have G(s,t,u,v)=PI.o(s,t)u+(I-Pl,o(s,t»)v. The
condition G(s, t, 0, a) = s implies that P J,O (s, t) = 1 - s/a, However, the
condition G(s, t, b, 1) = t implies that P 1,0 (s, t) = (t - 1)/(b - 1), This is a
contradiction. I

PROPOSITION 3.3. There is no quadratic polynomial of the four variables
s, t, u, v that satisfies (3.1) and at the same time is monotone on Qa,b'

Proof Assume that pes, t, u, v) is such a quadratic polynomiaL We
write

where ai' a2' a3 are some constants, and PI is a certain quadratic polyno­
mial not containing the terms u2

, v2 and uv. Since P satisfies (3.1), we have
a I = a2= a3 = O. This means that PI satisfies (3.1) and is monotone on
Qa,b' This contradicts Proposition 3.2 since PI EfJl. I

Let P be the polynomial of four variables defined by

By Lemma 2.3, P satisfies (3.1), however P is not monotone on Qa,b' If
fEJ{a,b satisfies (2.5), then by Lemma 2.3, the function F(x, y):=
P(f(x, O),f(x, 1),f(0, y),f(I, y)) is an AME off Due to the stringency of
the conditions in (2.5), we resort to the sequence {epn} defined in Section 2,
and hope that for each fixed f E J{a,b, the function epnO f satisfies (2.5) when
n is sufficiently large, Theorem 2.6 ensures that this method works for func­
tions satisfying Conditions (*). With the techniques involved, the result of
Theorem 2.6 is the best we can expect, Conditions (*) are all essential for
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the construction scheme to be successful. If we do not require that f be
strictly monotone on 0[0, 1]2, then we can find a number a, a<a<b, and
a functionfEV#a,b such thatf(O, 1/2)=f(1, 1/2)=a, For each n, in view of
(2.4), we have

oL(cP,,01, x, Y)I 1 ( cP,,(a)), ,
aX Y= ti2 = cP,,(a) cP,,(a)- cP,,(b) cP,,(f(x, O»fAx, 0)

+ ::i:~ cP~(f(x, 1»!'J\', t), (3,3)

Since cP;, are decreasing functions, we have cP~(f(x, t)) < cP~(f(x, 0», Thus
we can carefully design the two functions !'J\', 0), !,,(x, 1) such that for
each n, the function oL(cP,,01, x, y)/ox is negative at the point (x, 1/2)
when x is close to t even the derivatives of f(x, °),/(x, t ),/(0, y )'/(1, y)
are all positive, Therefore for each n, the function L( cP" 0 1, x, y) is not
monotone on [0, 1f,

Now we assume that f is strictly monotone on 0[0, t] 2 but allow some
of the derivatives of f(x, 0), f(x, 1),/(0, y), f( 1, y) to have isolated zeros,
Suppose that f;,(I, Yo) = 0, for some °< Yo < 1. Although we have
CP,,(f(O, y»<cP,,(f(l, y», for all yE [0,1], we can make /'(l, y) and
f(1, y) - f(O, y) so small in a neighborhood of Yo that for each n, the func­
tion cP" (f(l, y» - (cP" (f(0, y) )/cP" (b») is negative on some neighborhood
of Yo' By the equation

oL(cP"of, x, y)

ax
1 (cP 1 CP,,(f(O, y»)

cP,,(a) ,,(f(, y»- cP,,(b)

x cP~(f(x, 0» f',(x, 0)

+ cP,,(f(O, y» cP' (f( 1»f' ( 1)
cP,,(b) "x, x x, , (3.4 )

we can carefully design /" (x, 0), f'J\', 1) so that for each n, the function
oL( cP" 0 f, x, y)/ox is negative somewhere in [0, 1f, and therefore for each
n, the function L( cP" 0 1, x, y) is not monotone on [0, 1] 2,

We have also analyzed the operator l defined in (2.11) and the Boolean
sum operator L I by Dahmen, DeVore, and Micchelli as in (2.15), and
found that they too suffer from the limitation of having to require functions
to satisfy Conditions (*), The following theorem also casts some shadow
on the construction of AMEs,

THEOREM 3.4, Let d:= {G"};;"'=I be a sequence of analytic functions of
four variables on the set Qa,b' Let [aI' b l ] c (a, b). Assume that for each
a E [aI' b l ], and each n, there is a neighborhood N~,,, of the point (a, 1, a,a)
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restricted to the subspace topology on the set T, := {(s, t, u, IX):(S, t, u, IX) E (!)},

where (!) is an open set containing Qa,b where each Gn is analytic. Assume
that the three partials oGnlos, oGnlot, oGnlou are nonnegative on N,.n. Then
monotone extensions for functions of Aa,b by sf is not solvable.

Proof We shall prove this theorem by contradiction. Assume that sf
provides AMEs for functions of A a•b , Without loss of generality, we may
assume that sf is minimum, which means that if any subset Q of sf
provides AMEs for functions of A a•b , then Q= sf. Let IX, al < IX < b l be
fixed. Let A a denote the subset of all functions f in Aa,b satisfying the
following conditions: f(O, 1/2)=f(l, 1/2)=1X, a 1 <1X<b 1 , f(l, Y)=IX,
1/4 ~ y ~ 1/2, For every fE Aa> there exists n > 0, depending onf, such that
the function Gn(f(x, O),f(x, 1),f(0, y),f(l, y)) is a monotone extension
of f Thus we have

Gn(f(x, 0 ),f(x, 1), ex, ex) = ex,

Gn(a, 1,f(0, y), 1X)=ex, 1/4 ~ y ~ 1/2.
(3,5 )

Since in (3.5), the functionsf(x, O),f(x, 1),f(0, y) may vary independently
as long as the monotonicity of f on c[O, 1]2 be maintained, we observe
that the set A,

A:= {(s, t, u): 3n, such that Gn(s, t, IX, IX)=IX and Gn(a, 1, u, IX) = IX},

as a subset of [R3 has positive measure. Therefore, there exists a natural
number no such that the set A o,

A o=: {(s, t): Gno(s, t, IX, IX) = IX},

and the set Eo,

Eo := {u: Gno(a, 1, s, IX)=IX},

both have positive measure as subsets of [R2 and [R, respectively, The func­
tion GnJ~, t,lX, IX), for fixed IX, is analytic with respect to the two variables
s, t. Hence Gno(s, t, IX, a)=ex for all sand t with (s, t, a, a)EDa,b' For the
same reason Gno(a, 1, u, IX) = IX for all u with (a, 1, u, IX) E Da,b' Since aGnlos,
oGnlot, oGnlou, are nonnegative in a neighborhood of (a, 1, IX, IX) with
respect to the subspace topology on the set T" we can find an open set C
of /R;3, such that

(S,t,U)EC.

Applying the analyticity argument again, we conclude that

640i77/]-8

Gno(s, t, u, ex) = IX, (s, t, u, IX) E D u•b ' (3.6 )
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We have proved that for each fixed ct, a < ct < b, there exists a natural num­
ber no such that Eq. (3.6) is true. The cardinality argument yields that there
exists a natural number n j and a subset E of (aj, h j ) of positive measure
such that

Gn1 (s, t, u, ct) = ct, whenever (s, t, u, ct) E Qa,b and ct E E.

The analyticity of Gn1 on the set Qa,b implies that Gn1 (s, t, u, v) = v for all
(s, t, u, v) E Q a,b' It is easy to see that for any f E vHa,b, the function

Gn1(f(x, O),f(x, 1),1(0, y),f(I, y»

does not interpolate the boundary functionsf(x, O),f(x, 1),1(0, y),f(I, y).
This contradicts the assumption that .91 is minimum. I

4. HIGHER DEGREE OF MONOTONICITY

Let k be a natural number, and let hjE!R: (j= 1, ..., k). For fE C(!Rd
),

we define

.1jfhl (.) := .1fhl (-):= f(- + hd - f(·),

.12fhlh2(·) := .1(.1fhj)h2(·)'

and iterately

DEFINITION 4.1. Let Q c !Rd. A function f defined on Q is said to be
k-monotone (increasing) on Q if .1"fhl h2 .. hk (- ) ~ 0 whenever the points
involved are in Q.

Let Q be a connected region in If\\:d, let f be k th differentiable on Q. Then,
f is k-monotone on Q if and only if DPf(x) ~ 0 for all x E Q and all multi­
indices /3 with 1/31 = k.

It is natural to study the following problem: for a given function f being
k-monotone on 8[0, 1]2, find a k-monotone function F on [0, 1]2 that
agrees with f on the 8[0, 1Y Such a function F is called a k-monotone
extension of the function f The following theorem gives a partial solution
to this problem for the case k = 2.

THEOREM 4.2. Let fEC([O, 1]2). Suppose that the four boundary func­
tionsf(x, O),f(x, 1),1(0, y),f(I, y) have nonnegative second derivatives and
the following inequalities hold true:

f~,(y, 1) ~ f~(y, 0), 0 ~ y ~ 1. (4.1)
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Then for any order of smoothness possessed by the four boundary functions
f(x, 0), f(x, 1), f(O, y), f(1, y), there exists a 2-monotone extension F off
possessing the same order of smoothness on [0, 1J2. Moreover, if the four
boundary functions

f(x, O),/(x, 1),/(0, y)'/(1, y)

are analytic as univariate functions on their domains, then the function F is
a bivariate analytic function on [0, 1J2.

Proof Recall Eq. (2.15) in which the Boolean sum operator used in [1 J
is defined with the functions l,6(x), "'(y) being at our disposal. We borrow
from [1 J the following equations:

aLI
ax (x,y)="'(y)I'.(x,0)+(1-"'(y»I'.(x, 1) + t,6'(x)

x [,1"'(y) + f(O, y)- f(1, y)- f(O, 1)+ f(1, 1)], (4.2)

aLI
8y (x, y)=I,6(x)f~(O, y)+(1-I,6(x»f~(y, 1)+t/J'(y)

x [,1I,6(x) + f(x, 0)- f(x, 1)- f(l, 0)+ f(1, 1)]. (4.3)

We first consider the case A = O. In this case, we choose 1,6(x) = (1 - x f,
"'(y) = (1 - y)2. Then 1,6(0) = "'(0) = 1 and 1,6(1) = t/J( 1) = O. In view ofthe per­
tinent discussion on [1 J, such choices of the functions 1,6 and'" guarantee that
L I interpolates f on a[0, 1J2. Besides, from Eqs. (4.2) and (4.3), we obtain

a2Lax21 (x, y)="'(y)f;(x, 0)+ (1-"'(y»f;(x, 1) + t,6"(x)

x [f(0, y)- f(1, y)- f(O, 1)+ f(1, 1)], (4.4)

a;~l (x, y) = l,6(x) /.;(0, y) + (1- l,6(x» /.:~(y, 1) + "'''(y)

x [f(x, 0) - f(x, 1) - f(1, 0) + f(1, 1)], (4.5)

and

a
a

2

Lai (x, y)=""(y)(f~(x, 0)- f~(x, 1»+ ¢'(x)U;.(O, y)- f;.(1, y». (4.6)x y . .

By the Mean-Value Theorem and (4.1), we have

f( 0, y) - f( 1, y) - f( 0, 1) + f( 1, 1) = (y - 1)(f~. (0, ~) - f: (1, ~» ~ 0,
(4.7)

f(x, 0) - f(x, 1) -f(l, 0) + f(l, 1) = (x - 1)(1'.(1}, 0) - f~(I}, 1» ~ 0,
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where ~, 1'/ satisfy y ~ ~ ~ 1 and x ~ 1'/ ~ 1. Noticing 0 ~ q>(x) ~ 1,
O~ljJ(y)~ 1, q>'(x)~O, ljJ'(y)~O, and q>"(x) = ljJ"(y) = 2, and in view of
Eqs. (4.1), (4.4), and (4.5}-(4.7), we have for all (x, Y)E [0,1]2 that

fPL, a2L, a2L,
ax2 (x,y)~O, a

y
2 (x,y)~O, aXay(x,y)~O. (4.8)

Hence L[ is an extension of f satisfying our requirements.
Now assume A # O. In this case, we let the functions ¢(x), ljJ(y) be as

defined in Eq. (2.16). With these choices of the functions q>(x), ljJ(y),
L, (x, y) interpolates f on 0[0, 1J2 and meets the smoothness requirement.
We have

a;~, (x, y) = ljJ(y) f~(x, 0) + (l-ljJ(y» f~(x, 1),

a:~, (x, y)=¢(x)f;(O, y)+ (1-¢(x)f~(y,1),
~ .

:~~~ (x, y)=ljJ'(y)(f~(x,O)-f'.(x, 1»
1="::1 [f~.(l, y) - f'v(O, y)][f~(x, 0) - f'.(x, 1)].

(4.9)

From Equations in (4.7) and the definition of A, we have A < 0 and
¢(x) ~ 0, ljJ(y) ~ O. Similarly, applying The Mean-Value Theorem and the
inequalities in (4.1), we have

f(l, y) - f(O, y) - f(l, 0) + f(O, 0) ~ 0,

f( 1, y) - f( 0, y) - f( 1, 0) +f(0, 0) ~ 0,
(4.10)

Equation (4.10) implies that ¢(x)~ 1, ljJ(y)~ 1. It then follows from
Eqs. (4.1) and (4.9) that for all (x, y) E [0, 1] 2,

a2L[ a2L\ a2L,
ax2 (x, y)~O, a

y
2 (x, y)~O, axay (x, y)~O. I
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